Biomedical and Wireless Technologies for Pervasive Healthcare

Miodrag Bolic
Associate Professor
School of Electrical Engineering and
Computer Science (EECS)
Faculty of Engineering
Outline

• Pervasive healthcare
 – Wearable devices
 • Challenges and some Research Directions
 – Infrastructure sensors
 – Directions in pervasive healthcare
• My research group projects related to pervasive healthcare
• Future Directions
Pervasive Healthcare

Support continuous well-being, treatment and care of people rather than focusing on acute treatment and care.
Pervasive Healthcare: Wearable Sensors

• Contact-based

• Designed to monitor physiological processes in the human body

• Challenges:
 – Quality of data
 – Sensing modalities
 – Form factor
 – Power consumption
Data Quality and Content

• Unsupervised data collection – automatically or by the patient.

• Quality: How do we know that data is accurate/correct?
 ❖ Quality of raw data, data aggregation data, learning algorithms
 ❖ Identity and quantify noise, artifacts, activities ...
 ❖ Automatic signal quality analysis and mitigation

• Content: When data implies emergency, No false alarms, ...
Sensing and Form Factor

- Smart-phone
- Shirts
- Smart watches
- Smart jewelry
- Arm band

- Headphones
- Hearing aids
- Shoes
- Dental appliances
- Eyeglasses, ...
Power Consumption

• Battery-less sensors
 – Temperature sensing patch
 – Knitting the antenna into a sweater

• Rechargeable batteries, energy harvesting
 – Radio-frequency
 – Temperature
 – Movement

• Low power design
 – Communication
 – Processing
Pervasive Healthcare: Contactless Sensors

• Infrastructure sensors
 – Remote:
 • Radars, cameras
 • Using smartphone as a sonar to detect sleep apnea
 – Close proximity detection
 • Pressure mats
 • Bed occupancy sensors
Pervasive Healthcare - Actuators

An actuator is a mechanical or electrical device for moving or controlling a mechanism, thus enabling a system to perform a physical function

• Usually sensor input is used to trigger output

• Several types:
 – Initiate movement
 • Leg actuator
 – Initiate reaction
 • Fall prevention due to balance loss
 – Treatment
 • Neurostimulation for pain management
Traditional Pervasive Healthcare

• Monitoring
 – Monitoring of health signs
 – Monitoring daily life activities and social interactions
 – Monitoring for falls, wandering, location tracking

• Assistive technologies
 – Supporting elderly and disabled people
Extended Pervasive Healthcare

• Monitoring

• Assistive technologies

• Rescuing technologies

• Treatment and stimulation
My Current Research

Stimulate

Monitor

Assist with neural interfaces for sensing + neuromodulation

Monitor to capture daily activities and vital signs
Blood Pressure

Applications

• Monitoring of health signs
• Localization, detection of activities and interactions
• Rescue operations
• Stimulation devices
• Assistive systems

Technologies

ECG-assisted blood pressure
Blood Pressure – Research

<table>
<thead>
<tr>
<th>Problem</th>
<th>Approach</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inaccurate blood pressure monitors for: • atrial fibrillation, • diabetes</td>
<td>• Multifunctional device: ECG+Blood pressure • Novel way to determine blood pressure</td>
<td>• Developed dry ECG electrodes • New ECG-assisted blood pressure algorithms • Mathematical Modeling</td>
</tr>
</tbody>
</table>

- Developed dry ECG electrodes
- New ECG-assisted blood pressure algorithms
- Mathematical Modeling
Blood Pressure - Experiment
Biomedical Radar

Applications
• Monitoring of health signs
• Localization, detection of activities and interactions
• Rescue
• Stimulation devices
• Assistive systems

Technologies
Biomedical radar

Chest movement due to breathing
Biomedical Radar - Applications

• Through-the-wall radar
 – Police, firefighters

• Finding people under the rubble

• Detection of posture and activities of people

• Detection of stop-breathing events
 – Suicide events
 – Independent living
Biomedical Radar – Research

<table>
<thead>
<tr>
<th>Problem</th>
<th>Approach</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Reliable detection of a single subject</td>
<td>• Remove noise</td>
<td>• New signal processing algorithms for breathing extraction</td>
</tr>
<tr>
<td>• Distinguish between multiple subjects</td>
<td>• Localize subject(s)</td>
<td>• New method for posture detection</td>
</tr>
<tr>
<td></td>
<td>• Obtain clear breathing signal</td>
<td></td>
</tr>
</tbody>
</table>

• Future direction
 – Distinguishing between people and animals for rescuing operations
 – Detection of stress level of people
 – Detecting suicide attempts
Biomedical Radar - Experiments
Ranging and Detection of breathing

May 20, 2015
Radio Frequency IDentification-RFID

Applications
• Monitoring of health signs
• Localization, detection of activities and interactions
• Rescue
• Stimulation devices
• Assistive systems

Technologies
RFID
RFID - Research

<table>
<thead>
<tr>
<th>Problem</th>
<th>Approach</th>
<th>Method</th>
</tr>
</thead>
</table>
| • Detection daily activities of people
• Detecting their interactions | • Detecting proximity between tagged people and tagged objects
• Localize moving objects with RFID tags | • New component - sensatag (ST) that detects proximity of RFID tags
• New algorithms for localization |

Standard RFID system

![Diagram of Standard RFID system](image)
RFID - Research

<table>
<thead>
<tr>
<th>Problem</th>
<th>Approach</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Detection daily activities of people</td>
<td>• Detecting proximity between tagged people and tagged objects</td>
<td>• New component - sensatag (ST) that detects proximity of RFID tags</td>
</tr>
<tr>
<td>• Detecting their interactions</td>
<td>• Localize moving objects with RFID tags</td>
<td>• New algorithms for localization</td>
</tr>
</tbody>
</table>

Sensatag (ST) equipped RFID system

![Diagram of Sensatag (ST) equipped RFID system]
Non-Invasive Brain Stimulation

Applications
• Monitoring of health signs
• Localization, detection of activities and interactions
• Rescue
• Stimulation devices
• Assistive systems

Technologies
Transcranial direct current stimulation (tDCS)
What is transcranial Direct Current Stimulation?

• Device
 – Current: 2 mA DC
 – Current delivery: 2 wet electrodes
 – Duration of session: 20 min

• Effect
 – Long lasting effect in modulating the neurons

• Applications
 – Depression
 – Pain relief
 – Recovery from stroke
 – Addiction treatment
tDCS - Research

<table>
<thead>
<tr>
<th>Problem</th>
<th>Approach</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Is patient responding?</td>
<td>• Obtaining feedback during stimulation</td>
<td>• Measuring bioimpedance</td>
</tr>
<tr>
<td>• Does patient need more sessions?</td>
<td>• Redesign electrodes</td>
<td>• Clinical studies for opiate addicts</td>
</tr>
<tr>
<td>• Optimizing parameters of the stimulation</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![Electrical circuit diagram](image-url)
Tongue Display Unit

Applications
• Monitoring of health signs
• Localization, detection of activities and interactions
• Rescue
• Stimulation devices
• Assistive systems

Technologies
Tongue display unit
What is Tongue Display Unit?

• Why Tongue
 – highly mobile
 – very sensitive to touch
 – It has a large representation in the brain

• Device
 – Electrode array that faces the tongue
 – We can selectively activate electrodes as well as measure their impedance
 – Wireless communication
 – Smartphone control

• Applications
 – assistive devices
 – for diagnosis
 – for rehabilitation
Problem Approach Method

<table>
<thead>
<tr>
<th>Problem</th>
<th>Approach</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Translation of tongue gestures into mouse cursor movements and clicks</td>
<td>Detect contact between the tongue and the electrodes –</td>
<td>Bioimpedance measurements of each electrode</td>
</tr>
<tr>
<td></td>
<td>transfer the map to PC</td>
<td></td>
</tr>
</tbody>
</table>

Electrode Array

Display of the electrode contact map
Tongue Display Unit - Rehabilitation

<table>
<thead>
<tr>
<th>Problem</th>
<th>Approach</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tongue stimulation - Stroke</td>
<td>Turn on electrodes selectively to simulate desired patterns</td>
<td>Several applications/games have been developed.</td>
</tr>
<tr>
<td>rehabilitation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Gaming</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Concluding thoughts

• Home healthcare monitoring requires
 – Inexpensive, maintenance-free, reliable sensors and electrodes
 – Ways to express confidence in the measurement
 – Knowledge of situation awareness

• Stimulation and treatment requires
 – better understanding and utilizing feedback from the human body

• Combining everything together
 – based on sensing information, location and user actions
 – adaptively determine parameters of treatment/stimulation
Future Directions in the Field

• Measure
 – *Everything that we wear* becomes wearable device
 – *Everything that we hold* becomes hand-held device (steering wheel, book, ...)
 – *Everything used for remote detection* (cameras, smartphones, radars, sensors) will provide information about our health.

• Assist
 – Use all this measured information *for intelligent actuation/stimulation*