

SUPERVISED LEARNING APPROACH FOR RADAR-BASED FALL DETECTION

By:

Hamidreza Sadreazami, Miodrag Bolic and Sreeraman Rajan

MOTIVATION

- Uncontrolled, unintentional and sudden change of posture
- Leading cause of injury
 and accidental death for seniors

Chart 2.1
Population aged 0 to 14 years and 65 years and over, 1997 to 2037, Canada

- Wearable devices
- Video cameras
- Smart-phone sensors

Note: From 1997 to 2017, population estimates. From 2018 to 2037, Population Projections for Canada (2013 to 2063), Provinces and Territories, (2013 to 2038), Catalogue no. 91-520-X.

Source: Statistics Canada, Demography Division.

WHY CONTACTLESS MONITORING USING RADAR?

- Unlike wearable (contact) devices:
 - No need to wear a device
 - Multiple subjects can be monitored by one device
 - Does not interfere with daily activities
 - Is not sensitive to skin protection products or medication

- Does not invade privacy
- Performance, generally not affected by environment (light, etc)
- "Field of view" is large (occlusion is not an issue with certain types of radars).

RADAR- APPLICATIONS

- Through-the-wall radar
 - -Police, firefighters
 - -Finding people under the rubble

- Detection of posture and activities of people
- Detection of stop breathing events
 - -Suicide events
 - -Independent living

RADAR

Goals:

- Fall detection
- Fall prevention
- Vital sign monitoring
- Estimating level of activities during the day

a)

Radar signal transmission

DATA COLLECTION

- UWB transceiver → 5.9-10.3 GHz
- High spatial resolution
- Room measuring 12.6x4.1 m²
- Radar Scattering matrix
 mxn → slow-time/fast-time
- 15 seconds segments
- Sampling rate: 200 Hz
- Range bins: 5.35 cm
- 3000x189

- Manual labeling
- Supervised learning

DATASET

Fig. 1. Postures in room environment; before and after a fall incident (a) Standing and (b) Lying down.

TABLE I

TYPES AND NUMBER OF ACTIVITIES PERFORMED IN OUR EXPERIMENTS BY 10 DIFFERENT SUBJECTS IN THE TWO DIFFERENT ROOM ENVIRONMENTS.

Class	Description	# of Exp.	# of Exp. after augmentation (×10)
Fall	Stand along the radar line of sight and fall down	61	610
Fall	Walk toward the radar line of sight and fall down	59	590
Fall	Stand and fall down perpendicularly	67	670
Non-fall	Lie down and stand up	85	850
Non-fall	Lie down and stand up perpendicularly	64	640

PROPOSED METHODS

Time series analysis of the radar return signals

1D CNN, LSTM, ResNet, DTW, KNN, ...

Binary image representation of TF signals

2D CNN, KNN, SVM, DT, ...

CS, autoencoders

Color image representation of TF signals

2D CNN, KNN, SVM, DT, ...

CapsNet

TIME-SERIES ANALYSIS

$$\mathbf{x}_i = \sum_j \frac{x_{i,j}}{\underbrace{\max_j(|x_{i,j}|)}},$$

Falling down

TIME-SERIES ANALYSIS

Standing up

TIME-FREQUENCY ANALYSIS

Falling down

- Time-Frequency
- Spectrogram

TIME-FREQUENCY ANALYSIS

Standing up

TRANSFER LEARNING

• Small dataset

Transfer Learning

5 convolutional blocks

Freeze the first 4 blocks and retrain the last one.

3x3 Convolutional filters 2x2 Pooling layer

TRANSFER LEARNING

RESULTS

Table I. Accuracy, precision and sensitivity values (%) obtained using the proposed transfer learning-based method, when fine-tuning the VGG16 model with or without convolutional layers in a 3-fold cross-validation sense.

	Metrics			
Method	Accuracy	Precision	Sensitivity	
2 Conv+MP+GAP+Output	95.64	96.12	96.73	
1 Conv+MP+GAP+Output	95.64	96.12	96.73	
MP+GAP+Output	89.80	90.72	92.37	
GAP+Output	89.32	90.89	91.66	

RESULTS

Table II. Accuracy, precision and sensitivity values (%) obtained using the proposed transfer learning based method and those provided by LSVM, GSVM and KNN in a 3-fold cross-validation.

	Metrics			
Method	Accuracy	Precision	Sensitivity	
LSVM	80.01	82.64	83.34	
GSVM	79.13	85.12	80.46	
KNN	78.64	82.64	81.30	
Proposed	95.64	96.12	96.73	

CHALLENGES

• Subjects may fall in different directions relative the radar.

In perpendicular to the radar \rightarrow more false negatives

Multiple radar sensors

Integrating range info

Data Augmentation

Rotation, width shifting, height shifting, horizontal flipping, shearing, zooming

- Fall/non-fall activities at different distances to the radar
- Sitting down abruptly and bending over

FUTURE DIRECTIONS IN THE FIELD

Problems

- -Detection in an uncontrolled environment
- -Multiple people identification and tracking
- -Supervised algorithms trained only for a number of specific cases

Potential directions

- -Improvements of the sensors or new sensors
- -Sensor fusion at the massive scale
- -Inferring actions and conditions using unsupervised learning techniques

INFO

My Webpage:

http://sadreazami.research.mcgill.ca/

Group Webpage:

http://meddev.eecs.uottawa.ca/radar.html

Group Github:

https://github.com/Health-Devices-Research-Group

Hamidreza Sadreazami Postdoctoral Fellow- McGill Uni.

hsadreaz@uottawa.ca

@5145570594